Serveur d'exploration sur la glutarédoxine

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions.

Identifieur interne : 000678 ( Main/Exploration ); précédent : 000677; suivant : 000679

Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions.

Auteurs : Mackenzie J. Parker [États-Unis] ; Xuling Zhu ; Joanne Stubbe

Source :

RBID : pubmed:24401092

Descripteurs français

English descriptors

Abstract

The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (α) and NrdF (β) subunits and determined to have a dimanganic-tyrosyl radical (Mn(III)2-Y·) cofactor. The activity of this RNR and the one reconstituted from recombinantly expressed NrdE and reconstituted Mn(III)2-Y· NrdF using dithiothreitol as the reductant, however, was low (160 nmol min(-1) mg(-1)). The apparent tight affinity between the two subunits, distinct from all class Ia RNRs, suggested that B. subtilis RNR might be the protein that yields to the elusive X-ray crystallographic characterization of an "active" RNR complex. We now report our efforts to optimize the activity of B. subtilis RNR by (1) isolation of NrdF with a homogeneous cofactor, and (2) identification and purification of the endogenous reductant(s). Goal one was achieved using anion exchange chromatography to separate apo-/mismetalated-NrdFs from Mn(III)2-Y· NrdF, yielding enzyme containing 4 Mn and 1 Y·/β2. Goal two was achieved by cloning, expressing, and purifying TrxA (thioredoxin), YosR (a glutaredoxin-like thioredoxin), and TrxB (thioredoxin reductase). The success of both goals increased the specific activity to ~1250 nmol min(-1) mg(-1) using a 1:1 mixture of NrdE:Mn(III)2-Y· NrdF and either TrxA or YosR and TrxB. The quaternary structures of NrdE, NrdF, and NrdE:NrdF (1:1) were characterized by size exclusion chromatography and analytical ultracentrifugation. At physiological concentrations (~1 μM), NrdE is a monomer (α) and Mn(III)2-Y· NrdF is a dimer (β2). A 1:1 mixture of NrdE:NrdF, however, is composed of a complex mixture of structures in contrast to expectations.

DOI: 10.1021/bi401056e
PubMed: 24401092
PubMed Central: PMC3985883


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions.</title>
<author>
<name sortKey="Parker, Mackenzie J" sort="Parker, Mackenzie J" uniqKey="Parker M" first="Mackenzie J" last="Parker">Mackenzie J. Parker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemistry and ‡Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemistry and ‡Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139</wicri:regionArea>
<wicri:noRegion>Massachusetts 02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xuling" sort="Zhu, Xuling" uniqKey="Zhu X" first="Xuling" last="Zhu">Xuling Zhu</name>
</author>
<author>
<name sortKey="Stubbe, Joanne" sort="Stubbe, Joanne" uniqKey="Stubbe J" first="Joanne" last="Stubbe">Joanne Stubbe</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24401092</idno>
<idno type="pmid">24401092</idno>
<idno type="doi">10.1021/bi401056e</idno>
<idno type="pmc">PMC3985883</idno>
<idno type="wicri:Area/Main/Corpus">000662</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000662</idno>
<idno type="wicri:Area/Main/Curation">000662</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000662</idno>
<idno type="wicri:Area/Main/Exploration">000662</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions.</title>
<author>
<name sortKey="Parker, Mackenzie J" sort="Parker, Mackenzie J" uniqKey="Parker M" first="Mackenzie J" last="Parker">Mackenzie J. Parker</name>
<affiliation wicri:level="1">
<nlm:affiliation>Departments of †Chemistry and ‡Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Departments of †Chemistry and ‡Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139</wicri:regionArea>
<wicri:noRegion>Massachusetts 02139</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhu, Xuling" sort="Zhu, Xuling" uniqKey="Zhu X" first="Xuling" last="Zhu">Xuling Zhu</name>
</author>
<author>
<name sortKey="Stubbe, Joanne" sort="Stubbe, Joanne" uniqKey="Stubbe J" first="Joanne" last="Stubbe">Joanne Stubbe</name>
</author>
</analytic>
<series>
<title level="j">Biochemistry</title>
<idno type="eISSN">1520-4995</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Bacillus subtilis (enzymology)</term>
<term>Bacterial Proteins (chemistry)</term>
<term>Biocatalysis (MeSH)</term>
<term>Glutaredoxins (chemistry)</term>
<term>Glutaredoxins (genetics)</term>
<term>Glutaredoxins (isolation & purification)</term>
<term>Manganese (chemistry)</term>
<term>Oxidation-Reduction (MeSH)</term>
<term>Protein Structure, Quaternary (MeSH)</term>
<term>Protein Subunits (chemistry)</term>
<term>Recombinant Proteins (chemistry)</term>
<term>Recombinant Proteins (genetics)</term>
<term>Recombinant Proteins (isolation & purification)</term>
<term>Ribonucleotide Reductases (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (chemistry)</term>
<term>Thioredoxin-Disulfide Reductase (genetics)</term>
<term>Thioredoxin-Disulfide Reductase (isolation & purification)</term>
<term>Thioredoxins (chemistry)</term>
<term>Thioredoxins (genetics)</term>
<term>Thioredoxins (isolation & purification)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Bacillus subtilis (enzymologie)</term>
<term>Biocatalyse (MeSH)</term>
<term>Glutarédoxines (composition chimique)</term>
<term>Glutarédoxines (génétique)</term>
<term>Glutarédoxines (isolement et purification)</term>
<term>Manganèse (composition chimique)</term>
<term>Oxydoréduction (MeSH)</term>
<term>Protéines bactériennes (composition chimique)</term>
<term>Protéines recombinantes (composition chimique)</term>
<term>Protéines recombinantes (génétique)</term>
<term>Protéines recombinantes (isolement et purification)</term>
<term>Ribonucleotide reductases (composition chimique)</term>
<term>Sous-unités de protéines (composition chimique)</term>
<term>Structure quaternaire des protéines (MeSH)</term>
<term>Thioredoxin-disulfide reductase (composition chimique)</term>
<term>Thioredoxin-disulfide reductase (génétique)</term>
<term>Thioredoxin-disulfide reductase (isolement et purification)</term>
<term>Thiorédoxines (composition chimique)</term>
<term>Thiorédoxines (génétique)</term>
<term>Thiorédoxines (isolement et purification)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="chemistry" xml:lang="en">
<term>Bacterial Proteins</term>
<term>Glutaredoxins</term>
<term>Manganese</term>
<term>Protein Subunits</term>
<term>Recombinant Proteins</term>
<term>Ribonucleotide Reductases</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="composition chimique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Manganèse</term>
<term>Protéines bactériennes</term>
<term>Protéines recombinantes</term>
<term>Ribonucleotide reductases</term>
<term>Sous-unités de protéines</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymologie" xml:lang="fr">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" qualifier="enzymology" xml:lang="en">
<term>Bacillus subtilis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glutaredoxins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="isolation & purification" xml:lang="en">
<term>Glutaredoxins</term>
<term>Recombinant Proteins</term>
<term>Thioredoxin-Disulfide Reductase</term>
<term>Thioredoxins</term>
</keywords>
<keywords scheme="MESH" qualifier="isolement et purification" xml:lang="fr">
<term>Glutarédoxines</term>
<term>Protéines recombinantes</term>
<term>Thioredoxin-disulfide reductase</term>
<term>Thiorédoxines</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Biocatalysis</term>
<term>Oxidation-Reduction</term>
<term>Protein Structure, Quaternary</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Biocatalyse</term>
<term>Oxydoréduction</term>
<term>Structure quaternaire des protéines</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (α) and NrdF (β) subunits and determined to have a dimanganic-tyrosyl radical (Mn(III)2-Y·) cofactor. The activity of this RNR and the one reconstituted from recombinantly expressed NrdE and reconstituted Mn(III)2-Y· NrdF using dithiothreitol as the reductant, however, was low (160 nmol min(-1) mg(-1)). The apparent tight affinity between the two subunits, distinct from all class Ia RNRs, suggested that B. subtilis RNR might be the protein that yields to the elusive X-ray crystallographic characterization of an "active" RNR complex. We now report our efforts to optimize the activity of B. subtilis RNR by (1) isolation of NrdF with a homogeneous cofactor, and (2) identification and purification of the endogenous reductant(s). Goal one was achieved using anion exchange chromatography to separate apo-/mismetalated-NrdFs from Mn(III)2-Y· NrdF, yielding enzyme containing 4 Mn and 1 Y·/β2. Goal two was achieved by cloning, expressing, and purifying TrxA (thioredoxin), YosR (a glutaredoxin-like thioredoxin), and TrxB (thioredoxin reductase). The success of both goals increased the specific activity to ~1250 nmol min(-1) mg(-1) using a 1:1 mixture of NrdE:Mn(III)2-Y· NrdF and either TrxA or YosR and TrxB. The quaternary structures of NrdE, NrdF, and NrdE:NrdF (1:1) were characterized by size exclusion chromatography and analytical ultracentrifugation. At physiological concentrations (~1 μM), NrdE is a monomer (α) and Mn(III)2-Y· NrdF is a dimer (β2). A 1:1 mixture of NrdE:NrdF, however, is composed of a complex mixture of structures in contrast to expectations.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24401092</PMID>
<DateCompleted>
<Year>2014</Year>
<Month>04</Month>
<Day>08</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-4995</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>53</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2014</Year>
<Month>Feb</Month>
<Day>04</Day>
</PubDate>
</JournalIssue>
<Title>Biochemistry</Title>
<ISOAbbreviation>Biochemistry</ISOAbbreviation>
</Journal>
<ArticleTitle>Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions.</ArticleTitle>
<Pagination>
<MedlinePgn>766-76</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1021/bi401056e</ELocationID>
<Abstract>
<AbstractText>The class Ib ribonucleotide reductase (RNR) isolated from Bacillus subtilis was recently purified as a 1:1 ratio of NrdE (α) and NrdF (β) subunits and determined to have a dimanganic-tyrosyl radical (Mn(III)2-Y·) cofactor. The activity of this RNR and the one reconstituted from recombinantly expressed NrdE and reconstituted Mn(III)2-Y· NrdF using dithiothreitol as the reductant, however, was low (160 nmol min(-1) mg(-1)). The apparent tight affinity between the two subunits, distinct from all class Ia RNRs, suggested that B. subtilis RNR might be the protein that yields to the elusive X-ray crystallographic characterization of an "active" RNR complex. We now report our efforts to optimize the activity of B. subtilis RNR by (1) isolation of NrdF with a homogeneous cofactor, and (2) identification and purification of the endogenous reductant(s). Goal one was achieved using anion exchange chromatography to separate apo-/mismetalated-NrdFs from Mn(III)2-Y· NrdF, yielding enzyme containing 4 Mn and 1 Y·/β2. Goal two was achieved by cloning, expressing, and purifying TrxA (thioredoxin), YosR (a glutaredoxin-like thioredoxin), and TrxB (thioredoxin reductase). The success of both goals increased the specific activity to ~1250 nmol min(-1) mg(-1) using a 1:1 mixture of NrdE:Mn(III)2-Y· NrdF and either TrxA or YosR and TrxB. The quaternary structures of NrdE, NrdF, and NrdE:NrdF (1:1) were characterized by size exclusion chromatography and analytical ultracentrifugation. At physiological concentrations (~1 μM), NrdE is a monomer (α) and Mn(III)2-Y· NrdF is a dimer (β2). A 1:1 mixture of NrdE:NrdF, however, is composed of a complex mixture of structures in contrast to expectations.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Parker</LastName>
<ForeName>Mackenzie J</ForeName>
<Initials>MJ</Initials>
<AffiliationInfo>
<Affiliation>Departments of †Chemistry and ‡Biology, Massachusetts Institute of Technology , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhu</LastName>
<ForeName>Xuling</ForeName>
<Initials>X</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Stubbe</LastName>
<ForeName>JoAnne</ForeName>
<Initials>J</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>R01 GM081393</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
<Grant>
<GrantID>GM81393</GrantID>
<Acronym>GM</Acronym>
<Agency>NIGMS NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D052061">Research Support, N.I.H., Extramural</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>21</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Biochemistry</MedlineTA>
<NlmUniqueID>0370623</NlmUniqueID>
<ISSNLinking>0006-2960</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D001426">Bacterial Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D054477">Glutaredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D021122">Protein Subunits</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D011994">Recombinant Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>42Z2K6ZL8P</RegistryNumber>
<NameOfSubstance UI="D008345">Manganese</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>52500-60-4</RegistryNumber>
<NameOfSubstance UI="D013879">Thioredoxins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.17.4.-</RegistryNumber>
<NameOfSubstance UI="D012264">Ribonucleotide Reductases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 1.8.1.9</RegistryNumber>
<NameOfSubstance UI="D013880">Thioredoxin-Disulfide Reductase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D001412" MajorTopicYN="N">Bacillus subtilis</DescriptorName>
<QualifierName UI="Q000201" MajorTopicYN="Y">enzymology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001426" MajorTopicYN="N">Bacterial Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D055162" MajorTopicYN="N">Biocatalysis</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054477" MajorTopicYN="N">Glutaredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D008345" MajorTopicYN="N">Manganese</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010084" MajorTopicYN="N">Oxidation-Reduction</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020836" MajorTopicYN="N">Protein Structure, Quaternary</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D021122" MajorTopicYN="N">Protein Subunits</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011994" MajorTopicYN="N">Recombinant Proteins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012264" MajorTopicYN="N">Ribonucleotide Reductases</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="Y">chemistry</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013880" MajorTopicYN="N">Thioredoxin-Disulfide Reductase</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013879" MajorTopicYN="N">Thioredoxins</DescriptorName>
<QualifierName UI="Q000737" MajorTopicYN="N">chemistry</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000302" MajorTopicYN="N">isolation & purification</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2014</Year>
<Month>4</Month>
<Day>9</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24401092</ArticleId>
<ArticleId IdType="doi">10.1021/bi401056e</ArticleId>
<ArticleId IdType="pmc">PMC3985883</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Biol Chem. 1997 Jul 18;272(29):18044-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9218434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1985 Oct;150(1):76-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3843705</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1998 Feb 17;95(4):1692-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9465078</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2005 Jun;187(12):3921-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15937154</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2006 Jun 2;359(2):365-77</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16631785</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Appl Environ Microbiol. 2006 Aug;72(8):5260-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16885274</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2006 Sep 22;281(38):27705-11</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16861739</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 2008 Jul;190(14):4849-58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18502861</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1964 Oct;239:3445-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14245401</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14383-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18799738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Dec 19;283(51):35310-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18835811</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2008 Dec 9;47(49):13046-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19012414</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2009;4(3):363-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19247286</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Microbiol. 2009 Sep;73(6):1043-57</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19682248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2009;10:589</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19995434</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2010 Feb 16;49(6):1297-309</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20070127</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Protein Eng Des Sel. 2010 Aug;23(8):633-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20534631</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2010 Aug 18;132(32):11197-213</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20698687</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>FEBS J. 2010 Dec;277(23):4849-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20977673</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Struct Mol Biol. 2011 Mar;18(3):316-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21336276</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Mar 15;50(10):1672-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21250660</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Struct Biol. 2011;11:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21320329</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Biochem. 2011;80:733-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21456967</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2011 Jun 28;50(25):5615-23</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21561096</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biophys J. 2011 Aug 17;101(4):892-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21843480</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2011 Sep 23;286(38):33053-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21832039</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Crit Rev Biochem Mol Biol. 2012 Jan-Feb;47(1):50-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22050358</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Dec 27;108(52):21046-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22160671</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2012 May 8;51(18):3861-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22443445</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Structure. 2012 Aug 8;20(8):1374-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22727814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1988;158:357-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">3374387</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1989 Feb 15;264(5):2656-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2644268</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1991 May 28;30(21):5164-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2036382</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Science. 1991 Jul 19;253(5017):292-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1650033</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1994 Aug 18;370(6490):533-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8052308</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1994 Dec 20;91(26):12892-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7809142</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Apr 12;271(15):8779-85</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8621514</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 1996 Jul 2;35(26):8603-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8679622</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1996 Oct 25;271(43):26582-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8900130</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2012 Nov 16;287(47):39686-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23012357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2013 Mar 5;110(10):3835-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23431160</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Am Chem Soc. 2013 Mar 13;135(10):4027-39</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23402532</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2013 Jun 1;437(1):104-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23458356</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2014 Feb 28;289(9):6259-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24381172</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2000 Aug 18;275(33):25365-71</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10801858</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2002 Jan 15;41(2):462-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11781084</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2003 Apr 15;100(8):4678-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12682299</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 2003 Jun 27;330(1):87-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12818204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 2003 Sep 1;320(1):104-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12895474</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochemistry. 2003 Sep 2;42(34):10071-83</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12939135</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Biol Evol. 2003 Dec;20(12):2076-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12949151</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochim Biophys Acta. 1966 Feb 7;112(2):346-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5329026</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 1967 Mar 10;242(5):852-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5335913</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Mol Biol. 1969 Nov 28;46(1):25-38</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4902211</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Anal Biochem. 1970 Mar;34:123-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">5440901</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Methods Enzymol. 1978;51:227-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">357894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Bacteriol. 1997 Oct;179(20):6408-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9335290</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Stubbe, Joanne" sort="Stubbe, Joanne" uniqKey="Stubbe J" first="Joanne" last="Stubbe">Joanne Stubbe</name>
<name sortKey="Zhu, Xuling" sort="Zhu, Xuling" uniqKey="Zhu X" first="Xuling" last="Zhu">Xuling Zhu</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Parker, Mackenzie J" sort="Parker, Mackenzie J" uniqKey="Parker M" first="Mackenzie J" last="Parker">Mackenzie J. Parker</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GlutaredoxinV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000678 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000678 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GlutaredoxinV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24401092
   |texte=   Bacillus subtilis class Ib ribonucleotide reductase: high activity and dynamic subunit interactions.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24401092" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GlutaredoxinV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 15:13:42 2020. Site generation: Wed Nov 18 15:16:12 2020